
Introduction to Lablgtk (from its internals)
Adrien Nader - OCaml Users in PariS

1/34

LinksBindings creationFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Table Of Contents

2/34

5 Links
4 Bindings creation
3 Functional Reactive Programming for GUIs
2 Lablgtk Primer
1 Introduction

LinksBindings creationFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

What is GTK+

Graphical toolkit available on many platforms
C code with an object layer done through macros and runtime checks
Objects have methods, signals, properties (with automatic getters, setters and
notify::${property-name} signals)
Uses an event loop to trigger callbacks on the emission of signals

3/34

Introduction LinksBindings creationFunctional Reactive Programming for GUIsLablgtk Primer

Lablgtk

Bindings to GTK+-2 (and GTK+-1); GTK+-3 WIP
and gtkGL, glade, gnomecanvas, gnomehtml, gnomeui, gtkspell, rsvg,
gtksourceview(2)
Provides a high-level OCaml-style API (e.g labels are used everywhere)

4/34

Introduction LinksBindings creationFunctional Reactive Programming for GUIsLablgtk Primer

Development

Project is hosted on the OCaml Forge with Git
Development depends on demand
API coverage increased only on-demand to avoid bit-rot of unused code
Additions most usually simple to do: they're done quickly
Join to work on what you want to change

5/34

Introduction LinksBindings creationFunctional Reactive Programming for GUIsLablgtk Primer

GTK+-3 Status

New GTK+ version which was released around 2 years ago
Not that many big changes but a few annoying ones
Pushes the use of gobject-introspection
... which is a good idea but has its issues: undocumented, pythonic, not meant
for compiled bindings

6/34

Introduction LinksBindings creationFunctional Reactive Programming for GUIsLablgtk Primer

Lablgtk Primer

Lablgtk Primer

7/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

A basic example

A window with a big text zone and a button.
When the button is clicked, a modal window pops up and asks the user for text to put
in the text zone below.
Step-by-step in the slides that follow.

8/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

How to browse the API

ocamlfind ocamlbrowser -package lablgtk2
Merlin for emacs and vim, ocp-index, ...
gtk.org for detailled explanation: lablgtk's API follows the C API very closely

9/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Handy additions

GToolbox has convenience functions: menus, dialog boxes, lists and trees,
shortcuts, ... yours
Extra libs like lablgtk-extras
Integrate lwt/ocamlnet into glib's main loop
Glade, either by loading the description at runtime or translating it to OCaml

10/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

About the code in these slides

To run the codes, load ocamlfind, lablgtk2 and react in the toplevel:
 #use "topfind";;

 #require "lablgtk2.auto-init";;

 #require "react";;

11/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Initialize glib and GTK+ (requires a display).

let () =

 GMain.init ();

12/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Create a window with some default values.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

13/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Windows can only contain objects; insert a box which can hold many objects and
arrange them.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

14/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Add a label in the box with default settings and make it take as much space as
available.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

 let label = GMisc.label ~text:"<empty>" ~selectable:true ~line_wrap:true

 ~justify:`CENTER ~packing:(vbox#pack ~expand:true) () in

15/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Add a button at the end of the box.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

 let label = GMisc.label ~text:"<empty>" ~selectable:true ~line_wrap:true

 ~justify:`CENTER ~packing:(vbox#pack ~expand:true) () in

 let t = "Change text" in

 let btn = GButton.button ~packing:vbox#pack ~label:t () in

16/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Add a callback which is triggered upon clicking the button.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

 let label = GMisc.label ~text:"<empty>" ~selectable:true ~line_wrap:true

 ~justify:`CENTER ~packing:(vbox#pack ~expand:true) () in

 let t = "Change text" in

 let btn = GButton.button ~packing:vbox#pack ~label:t () in

 btn#connect#clicked (fun () ->

17/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

The callback spawns a toolbox asking for text which will replace the text in our
label above.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

 let label = GMisc.label ~text:"<empty>" ~selectable:true ~line_wrap:true

 ~justify:`CENTER ~packing:(vbox#pack ~expand:true) () in

 let t = "Change text" in

 let btn = GButton.button ~packing:vbox#pack ~label:t () in

 btn#connect#clicked (fun () -> match GToolbox.input_text ~title:t t with

 | Some text -> label#set_text text | None -> ());

18/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Show the window.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

 let label = GMisc.label ~text:"<empty>" ~selectable:true ~line_wrap:true

 ~justify:`CENTER ~packing:(vbox#pack ~expand:true) () in

 let t = "Change text" in

 let btn = GButton.button ~packing:vbox#pack ~label:t () in

 btn#connect#clicked (fun () -> match GToolbox.input_text ~title:t t with

 | Some text -> label#set_text text | None -> ());

 w#show ();

19/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Start the mainloop.

let () =

 GMain.init ();

 let w = GWindow.window ~width:320 ~height:240 ~title:"Mini demo" () in

 let vbox = GPack.vbox ~packing:w#add () in

 let label = GMisc.label ~text:"<empty>" ~selectable:true ~line_wrap:true

 ~justify:`CENTER ~packing:(vbox#pack ~expand:true) () in

 let t = "Change text" in

 let btn = GButton.button ~packing:vbox#pack ~label:t () in

 btn#connect#clicked (fun () -> match GToolbox.input_text ~title:t t with

 | Some text -> label#set_text text | None -> ());

 w#show ();

 GMain.main ()

20/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Recap: most common constructs

new widgets: GWindow.window, GPack.vbox
properties:

set when creating the widget: GWidget.widget ~property:value ()

set later on: widget#set_property value

get : widget#property
register callbacks:
- #connect#clicked (fun () -> eprintf "Clicked!")

- #connect#notify_${property} ~callback:()

add items to containers:
When creating the widget, #pack if available, #add otherwise:
- GButton.button ~text:"42" ~packing:(box#pack ~expand:false) ()

- GButton.button ~text:"42" ~packing:win#add ()

Or afterwards: #coerce the object to the base widget type:
 box#pack button#coerce

21/34

Lablgtk Primer LinksBindings creationFunctional Reactive Programming for GUIsIntroduction

Functional Reactive Programming for GUIs

Functional Reactive Programming for GUIs

22/34

Functional Reactive Programming for GUIs LinksBindings creationLablgtk PrimerIntroduction

Functional vs. imperative mismatch

Callbacks for signals usually don't return a value:
 (GButton.button ())#connect#clicked;;

 - : callback:(unit -> unit) -> GtkSignal.id = <fun>

We have to use imperative code to count the number of clicks on a button:
 type state = { count : int } ;;

 let s = ref { count = 0 } ;;

 let () =

 let w = GWindow.window ~show:true () in

 let b = GButton.button ~packing:w#add () in

 let callback () =

 s := { !s with count = !s.count + 1 } in

 b#connect#clicked ~callback;

 GMain.main ()

23/34

Functional Reactive Programming for GUIs LinksBindings creationLablgtk PrimerIntroduction

Functional vs. imperative mismatch (cont.)

But OCaml is multi-paradigm!
Impossible to be both imperative and functional for the program architecture.
Once type state becomes more complicated, initialization becomes
 let state = ref (Obj.magic 0)

or
 type state1 = state Lazy.t ;;

 let state = ref (lazy { init with values you hope to be "ready" })

Having laziness by default like in Haskell probably helps but only slightly.

24/34

Functional Reactive Programming for GUIs LinksBindings creationLablgtk PrimerIntroduction

Functional vs. imperative mismatch - some FRP

We want functional updates: callbacks would be (state -> state):
 ~callback:(fun state0 -> { state0 with count = state0.count + 1 })

And no init to Obj.magic or using lazy.
FRP can help (and it's simple)

25/34

Functional Reactive Programming for GUIs LinksBindings creationLablgtk PrimerIntroduction

Functional vs. imperative mismatch - some FRP

A trivial example which counts the number of clicks on a button.
 type state = { count : int }

 let event, event_send = React.E.create ()

 let state_machine (s : state) event =

 Printf.printf "Count was %d. %!" s.count;

 match event with

 | `Incr -> { s with count = s.count + 1 }

 | `Decr -> { s with count = s.count - 1 }

 let () =

 let w = GWindow.window ~show:true () in

 let b = GButton.button ~packing:w#add () in

 b#connect#clicked (fun () -> event_send `Incr);

 let _state = React.E.fold state_machine { count = 0 } event in
26/34 GMain.main ()

Functional Reactive Programming for GUIs LinksBindings creationLablgtk PrimerIntroduction

Bindings creation

Bindings creation

27/34

Bindings creation LinksFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Bindings creation

Several layers: C stubs, object layer, signals, properties...
Mostly generated
Some hand-written code, especially for the higher-level layers (convenience
functions)

28/34

Bindings creation LinksFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Stubs and low-level API - 1

C macros:
 ML_1 (gtk_window_new, Window_type_val, Val_GtkWidget_window)

A DSL, varcc:
 type arrow_type = "GTK_ARROW_"

 [`UP | `DOWN | `LEFT | `RIGHT]

Another DSL, propcc:
 class Window set wrap : Bin {

 "title" gchararray : Read / Write

 method resize : "width:int -> height:int -> unit"

 signal activate_default

 }

29/34

Bindings creation LinksFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Stubs and low-level API - 2

gtkWindow.ml:
 module Window = struct

 include Window (* from propcc's output. *)

 external get_wmclass_name : [> `window] obj -> string

 = "ml_gtk_window_get_wmclass_name"

 (* From before propcc *)

 end

Inheritance is handled through polymorphic variants:
 type text_view = [container | `textview]

Functions then require values of type [> `textview] Gtk.obj.

30/34

Bindings creation LinksFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Object API

Mostly boiler-plate apart from the convenience functions:
From gWindow.ml:
 class window_skel obj = object

 inherit window_props (* comes from propcc in ogtkBaseProps.ml *)

 method resize = Window.resize obj

 end

 [...]

 let window ?kind =

 make_window [] ~create:(fun p -> new window (Window.create ?kind p))

31/34

Bindings creation LinksFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Signals

Again, mostly boiler-plate code:
From ogtkBaseProps.ml (generated by propcc):
 class virtual container_sigs = object (self)

 method add = self#connect

 { Container.S.add with

 marshaller = fun f -> marshal1 conv_widget "GtkContainer::add" f }

 end

From gObj.ml:
 class ['a] gobject_signals obj = object

 method private connect =

 fun sgn ~callback -> GtkSignal.connect obj ~sgn ~callback

 end

32/34

Bindings creation LinksFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Links

lablgtk sources: README (must-read!), doc/
Dawid Toton's description on how to bind GtkPrint (need to find it again)
cowboy(-glib): http://git.ocamlcore.org/cgi-bin/gitweb.cgi?p=cowboy/cowboy.git
lablgtk-extras: http://gtk-extras.forge.ocamlcore.org/
lablgtk-react:
http://git.ocamlcore.org/cgi-bin/gitweb.cgi?p=lablgtk-react/lablgtk-react.git
#self: will probably appear as part of the documentation

33/34

LinksBindings creationFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

Questions?
(and Patoline is nice)

34/34

LinksBindings creationFunctional Reactive Programming for GUIsLablgtk PrimerIntroduction

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	

